РОССИЙСКАЯ ФЕДЕРАЦИЯ

2 586 193⁽¹³⁾ C1

(51) MIIK C22C 38/46 (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(21)(22) Заявка: 2015111271/02, 30.03.2015

(24) Дата начала отсчета срока действия патента: 30.03.2015

Приоритет(ы):

(22) Дата подачи заявки: 30.03.2015

(45) Опубликовано: 10.06.2016 Бюл. № 16

(56) Список документов, цитированных в отчете о поиске: EP 1413634 A1, 28.04.2004. US 20040169750 A1, 02.09.2004. RU 2303648 C1, 27.07.2007. RU 2445397 C1, 27.03.2012. EP 1683885 A1, 26.07.2006. EP 1179380 B1, 14.10.2009.

Адрес для переписки:

119334, Москва, Ленинский пр., 49, ИМЕТ РАН

(72) Автор(ы):

Банных Олег Александрович (RU), Блинов Виктор Михайлович (RU), Костина Мария Владимировна (RU), Лукин Евгений Игоревич (RU), Блинов Евгений Викторович (RU), Ригина Людмила Георгиевна (RU), Банных Игорь Олегович (RU)

(73) Патентообладатель(и):

Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) (RU)

N

S

 ∞

တ

9

ယ

(54) ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СВАРИВАЕМАЯ СТАЛЬ

(57) Реферат:

Изобретение относится области металлургии, именно составам a К высокопрочных коррозионно-стойких сталей, используемых для изготовления высоконагруженных деталей и конструкций в машиностроении, судостроении, авиации и железнодорожном транспорте. Сталь содержит, мас.%: углерод 0,01-0,04, кремний 0,10-0,80, марганец 0,50-1,50, хром 14,0-16,0, никель 3,0-5,0, азот 0,1-0,2, медь от более 0,5 до 2,5, ванадий 0,02-0,20, кальций от более 0,005 до 0,030, железо и примеси - остальное. Отношение содержания углерода к содержанию азота составляет 0,2 или менее. Сталь обладает высокими пределом текучести и пределом прочности при сохранении высокой пластичности и ударной вязкости. 2 табл.

ത

S

RUSSIAN FEDERATION

(19) **RU**(11) **2 586 193**(13) **C1**

(51) Int. Cl. *C22C* 38/46 (2006.01)

FEDERAL SERVICE FOR INTELLECTUAL PROPERTY

(12) ABSTRACT OF INVENTION

(21)(22) Application: 2015111271/02, 30.03.2015

(24) Effective date for property rights: 30.03.2015

Priority:

(22) Date of filing: 30.03.2015

(45) Date of publication: 10.06.2016 Bull. № 16

Mail address:

119334, Moskva, Leninskij pr., 49, IMET RAN

(72) Inventor(s):

Bannykh Oleg Aleksandrovich (RU), Blinov Viktor Mikhajlovich (RU), Kostina Mariya Vladimirovna (RU), Lukin Evgenij Igorevich (RU), Blinov Evgenij Viktorovich (RU), Rigina Lyudmila Georgievna (RU), Bannykh Igor Olegovich (RU)

(73) Proprietor(s):

Federalnoe gosudarstvennoe byudzhetnoe uchrezhdenie nauki Institut metallurgii i materialovedeniya im. A.A. Bajkova Rossijskoj akademii nauk (IMET RAN) (RU)

N

S

ထ တ

9

ယ

(54) HIGH-STRENGTH CORROSION-RESISTANT WELDED STEEL

(57) Abstract:

FIELD: metallurgy.

SUBSTANCE: invention relates to metallurgy, namely to compositions of high-strength corrosion-resistant steels used for making high-loaded parts and structures in machine building, ship building, aviation and railway transport. Steel contains, wt%: carbon 0.01-0.04, silicon 0.10-0.80, manganese 0.50-1.50, chromium 14.0-16.0, nickel 3.0-5.0, nitrogen 0.1-0.2, copper from

more than 0.5 to 2.5, vanadium 0.02-0.20, calcium from over 0.005 to 0.030, iron and impurities are balance. Carbon-to-nitrogen ratio makes 0.2 or less.

EFFECT: steel has high yield point and ultimate strength at maintaining high ductility and impact strength.

1 cl, 2 tbl

<u>ဂ</u>

586193

=

Изобретение относится к области металлургии, в частности к области легированных высокопрочных коррозионно-стойких сталей, используемых для высоконагруженных конструкций в машиностроении, судостроении, авиации и железнодорожном транспорте.

Известна коррозионно-стойкая хромоникелевая сталь 14X17H2 (ГОСТ 5632-72), содержащая 0,11-0,17% углерода, 16-18% хрома, 1,5-2,5% никеля, не более 0,2 титана, неизбежные примеси и железо.

Основными недостатками этой стали являются: трудная свариваемость, низкая прочность и склонность к отпускной хрупкости.

Известна коррозионно-стойкая хромоникелевая сталь 25X13H2, содержащая 0,2-0,3% углерода, 12-14% хрома, 1,5-2,0% никеля, не более 0,2 титана, неизбежные примеси и железо (См. А.А. Бабков, М.В. Приданцев. Коррозионно-стойкие стали и сплавы. М., Металлургия, 1971 г., с. 114-118).

Главным недостатком этой стали является низкая пластичность (δ =3-7 %).

Наиболее близкой по химическому составу к предлагаемому техническому решению является коррозионно-стойкая свариваемая сталь 07X16H6 (ГОСТ 5632-72), содержащая 0,05-0,09% углерода, 15,5-17,5% хрома, 5,0-8,0% никеля, до 0,8 кремния, до 0,8% марганца, неизбежные примеси и железо.

Однако эта сталь обладает прочностью, недостаточной для высоконагруженных деталей, плохо обрабатывается резанием. Структура металла в крупногабаритных поковках и горячекатаных трубах, изготовленных из этой стали, крупнозернистая. Кроме того, высокое содержание никеля обуславливает ее высокую стоимость.

Задача, на решение которой направлено настоящее изобретение, заключается в создании способа легирования и обработки, позволяющего получать высокопрочную экономно-легированную коррозионно-стойкую свариваемую сталь, обладающую более высоким пределом текучести, и пределом прочности при сохранении повышенной пластичности и ударной вязкости.

Техническим результатом изобретения является повышение прочности и пластичности коррозионно-стойкой свариваемой стали.

Технический результат достигается тем, что в коррозионно-стойкую свариваемую сталь, содержащую углерод, кремний, марганец, хром, никель, железо и примеси, дополнительно введены азот, медь, ванадий и кальций при следующем соотношении компонентов мас.%:

	углерод	0,01-0,04
25	кремний	0,10-0,80
35	марганец	0,50-1,50
	хром	14,0-16,0
	никель	3,0-5,0
	азот	0,1-0,2
	медь	от более 0,5 до 2,5
	ванадий	0,02-0,20
40	кальций	от более 0,005 до 0,030
	железо и примеси	остальное

При этом отношение содержания углерода к содержанию азота составляет 0,2 или менее.

Дополнительное введение азота в состав стали в количестве более 0,1% приводит к повышению прочности. Увеличение показателей прочности обусловлено наличием азота в γ-твердом растворе и дополнительным упрочнением частицами нитридов хрома, выделяющимися в процессе нагрева при температуре 400°С. Удовлетворительные показатели пластичности и ударной вязкости связаны с наличием в структуре

небольшого количества остаточного аустенита, расположенного между кристаллами мартенсита. При концентрации азота более 0,20% трудно получить качественный металл без пористости из-за ограниченной его растворимости (предел растворимости азота в сталях такого состава на уровне 0,19-0,22%, а композиционное содержание азота еще меньше).

При содержании углерода менее 0.01% уровень прочностных свойств не достигает требуемых значений, а при увеличении его количества выше 0.04% по границам зерен выделяются крупные частицы карбидов хрома типа $\mathrm{Cr}_{23}\mathrm{C}_6$, приводящие к снижению пластичности. При отношении содержаний углерода и азота меньше или равному 0.2%, такие карбиды не образуются.

Добавки ванадия не менее 0.02% обеспечивают получение мелкозернистой структуры. А увеличение его количества более 0.2% приводит к снижению прочности, вследствие образования нитридов ванадия и обеднения γ -твердого раствора азотом.

Дополнительное введение кальция в количестве, превышающем 0,005%, обеспечивает хорошую раскисленность металла, улучшает обрабатываемость стали резанием. Но при увеличении его содержания более 0,03% наблюдается снижение пластичности.

При содержании хрома менее 14,0% в стали после горячей пластической деформации и термической обработки не достигается требуемый уровень коррозионной стойкости. При увеличении количества хрома более 16,0% и уменьшении количества никеля менее 3,0% снижаются пластические свойства и вязкость стали. Увеличение же концентрации никеля более 5,0% приводит к снижению растворимости азота, и значительному возрастанию стоимости металла (каждый дополнительный процент никеля при современном уровне цен повышает стоимость одной тонны стали на ~5%).

Марганец повышает растворимость азота в стали, раскисляет сталь, но при содержании его выше 1,5% возрастает доля аустенита в структуре металла, что приводит к снижению прочности.

Медь в количестве 0,5-2,5% позволяет исключить в микроструктуре стали дельтаферрит, а также повысить коррозионную стойкость и прочность при старении, за счет выделения дисперсных частиц фазы, богатой медью.

³⁰ Сталь выплавляли в открытой индукционной печи с последующим электрошлаковым переплавом. Составы стали опытных плавок приведены в табл. 1.

Термическую обработку проводили по режимам, состоящим из закалки от 1000° С с охлаждением в воде и последующего отпуска при 400° С в течение 2 часов. Результаты механических испытаний металла и отношение количества γ/α фаз (γ -аустенит, α -мартенсит) приведены в табл. 2.

Таким образом, по результатам испытаний видно, что предлагаемая сталь, в отличие от прототипа, обладает более высоким пределом текучести, и пределом прочности при сохранении повышенной пластичности и ударной вязкости, что приводит к увеличению долговечности и надежности изделий и конструкций из этой стали. Как показали испытания, предлагаемая сталь хорошо сваривается всеми видами сварки. Сталь экономична, обладает высокой стойкостью к атмосферной коррозии (скорость коррозии в 3-процентном растворе NaCl составила менее 0,0005 г/м² ч).

RU 2586 193 C1

Таблица 1 - Химический состав стали

	Сталь	№ плавки	Содержание компонентов, масс.%								CAL			
			C	N	Cr	Ni	V	Mn	Si	Cu	Ca	S	P	C/N
	Известная	1	0,09	-	15,5	6,0	-	0,8	0,49	-	-	0,015	0,020	-
	Предлагаемая	2	0,01	0,10	14,6	3,0	0,05	0,5	0,1	2,2	0,01	0,005	0,010	0,1
		3	0,04	0,10	14,2	4,7	0,10	1,5	0,5	1,2	0,03	0,015	0,020	0,2
		4	0,02	0,19	14,2	3,4	0,02	0,5	0,3	1,6	0,005	0,004	0,012	0,13

Таблица 2 - Механические свойства стали

9	Сталь	№ плавки	Термообработка	σ _в , МПа	σ _{0,2} , МПа	δ, %	ψ, %	KCU, МДж/м ²	γ/α	Cr _{э.м.}
15	Известная	1	Закалка от 1000°С, охлаждение в воде + отпуск 400°С в течение 2 часов, охлаждение на воздухе	1100	900	18,0	57,2	0,75	-	-
	Предлагаемая	2		. 1370	1208	18,3	65,3	1,63	0,052	-4,02
		3		1590	1470	19,0	64,0	0,8	0,176	-7,95
		4		1600	1460	20,0	63,0	1,7	0,150	-7,9

Формула изобретения

20 Высокопрочная коррозионно-стойкая свариваемая сталь, содержащая углерод, кремний, марганец, хром, никель, железо и примеси, отличающаяся тем, что она дополнительно содержит азот, медь, ванадий и кальций при следующем соотношении компонентов, мас.%:

25	углерод	0,01-0,04
	кремний	0,10-0,80
	марганец	0,50-1,50
	хром	14,0-16,0
30	никель	3,0-5,0
	азот	0,1-0,2
	медь	от более 0,5 до 2,5
	ванадий	0,02-0,20
	кальций	от более 0,005 до 0,030
	железо и примеси	остальное

при этом отношение содержания углерода к содержанию азота составляет 0,2 или менее.

40

35

45