РОССИЙСКАЯ ФЕДЕРАЦИЯ

(19)

2 754 129⁽¹³⁾ C1

(51) M_ПK C23C 4/04 (2006.01) *C23C 4/134* (2016.01) A61L 27/32 (2006.01) A61K 6/838 (2020.01) **A61F 2/28** (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(52) CIIK

C23C 4/134 (2021.05); C23C 4/04 (2021.05); A61L 27/32 (2021.05); A61K 6/838 (2021.05); A61F 2/28 (2021.05)

(21)(22) Заявка: 2020137340, 13.11.2020

(24) Дата начала отсчета срока действия патента: 13.11.2020

Дата регистрации: 27.08.2021

Приоритет(ы):

(22) Дата подачи заявки: 13.11.2020

(45) Опубликовано: 27.08.2021 Бюл. № 24

Адрес для переписки:

119334, Москва, Ленинский пр., 49, ИМЕТ РАН

(72) Автор(ы):

Фадеева Инна Вилоровна (RU), Баринов Сергей Миронович (RU), Калита Василий Иванович (RU), Комлев Дмитрий Игоревич (RU), Радюк Алексей Александрович (RU), Фомин Александр Сергеевич (RU), Тютькова Юлия Борисовна (RU)

(73) Патентообладатель(и):

Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) (RU)

N

ထ

(56) Список документов, цитированных в отчете о поиске: RU 2641597 C1, 18.01.2018. RU 2372101 C1, 10.11.2009. UZ 5907 C, 30.08.2019. CN 102908216 A, 06.02.2013. CN 101283922 A, 15.10.2008.

(54) Способ плазменного напыления биосовместимых покрытий на основе трикальцийфосфата с дополнительным легирующим элементом

(57) Реферат:

Изобретение относится к способу плазменного напыления на поверхность имплантата биосовместимого покрытия основе трикальцийфосфата. марганецсодержащего предварительную Проводят подготовку поверхности имплантата абразивной обработкой. Затем осуществляют плазменное напыление подслоя титана с дистанции напыления 90-110 мм при расходе плазмообразующего газа 45-60 л/мин и токе дуги 400-450 А. Последующее плазменное напыление биосовместимого слоя из порошка марганецсодержащего трикальцийфосфата с концентрацией марганца 3 мас.% проводят с дистанции напыления 90-110 мм при расходе плазмообразующего газа 34-36 л/мин и токе дуги 400-450 А. Обеспечивается получение покрытия с антибактериальными свойствами за счет марганецсодержащего применения трикальцийфосфата (Мп-ТКФ), используемого в качестве компонента, входящего в состав плазмонапыленного покрытия. 3 пр.

တ 2 S 2

 $\mathbf{\alpha}$

(12) ABSTRACT OF INVENTION

(52) CPC

C23C 4/134 (2021.05); C23C 4/04 (2021.05); A61L 27/32 (2021.05); A61K 6/838 (2021.05); A61F 2/28 (2021.05)

(21)(22) Application: 2020137340, 13.11.2020

(24) Effective date for property rights: 13.11.2020

Registration date: 27.08.2021

Priority:

(22) Date of filing: 13.11.2020

(45) Date of publication: 27.08.2021 Bull. № 24

Mail address:

119334, Moskva, Leninskij pr., 49, IMET RAN

(72) Inventor(s):

Fadeeva Inna Vilorovna (RU), Barinov Sergej Mironovich (RU), Kalita Vasilij Ivanovich (RU), Komlev Dmitrij Igorevich (RU), Radyuk Aleksej Aleksandrovich (RU), Fomin Aleksandr Sergeevich (RU), Tyutkova Yuliya Borisovna (RU)

(73) Proprietor(s):

Federalnoe gosudarstvennoe byudzhetnoe uchrezhdenie nauki Institut metallurgii i materialovedeniya im. A.A. Bajkova Rossijskoj akademii nauk (IMET RAN) (RU)

$(54)\,$ METHOD FOR PLASMA SPRAYING OF BIOCOMPATIBLE COATINGS BASED ON TRICALCIUM PHOSPHATE WITH ADDITIONAL ALLOYING ELEMENT

(57) Abstract:

FIELD: plasma spraying on biocompatible graft surface.

SUBSTANCE: invention relates to a method of plasma spraying on the implant surface of a biocompatible coating based on manganese-containing tricalcium phosphate. Preliminary preparation of the implant surface is carried out by abrasive treatment. Then, the plasma deposition of the titanium sublayer is carried out from a deposition distance of 90-110 mm at a plasma forming gas flow rate of 45-60 l/min and an arc current of 400-450 A. Subsequent plasma

sputtering of a biocompatible layer of a powder of manganese-containing tricalcium phosphate with a concentration of manganese of 36 weight percentage, is carried out from a spray distance of 90-110 mm at a plasma forming gas flow rate of 34-36 l/min and an arc current of 400-450 A.

EFFECT: coating with antibacterial properties is obtained through the use of manganese-containing tricalcium phosphate (Mn-TCP), used as a component of the plasma dust coating.

1 cl, 3 ex

2754129

~

N

S

Изобретение относится к области медицины, в частности к медицинским имплантатам, применяемым в ортопедии, травматологии и стоматологии. Изобретение раскрывает способ нанесения на титановые имплантаты биосовместимых покрытий на основе трикальцийфосфата, содержащих ионы марганца.

5

40

Известен способ нанесения кальцийфосфатных покрытий на титановый имплантат (Патент РФ №2715055, Способ получения кальцийфосфатного покрытия на образце), который включает распыление мишени, содержащей, по крайней мере, одно кальцийфосфатное соединение, в плазме высокочастотного разряда в вакуумной камере магнетронной распылительной системы, в атмосфере аргона на образцы, размещенные на подложке, как в зоне эрозии мишени, так и вне области эрозии мишени. При этом, по крайней мере, один образец размещают на поворотном столе вакуумной камеры на расстоянии 70-90 мм от нижней плоскости мишени, причем мишень выполнена из кальцийфосфатных соединений, выбранных из ряда: гидроксиапатит, и/или ионозамещенные гидроксиапатиты, и/или трикальцийфосфат, и/или ионозамещенный трикальцийфосфат, и/или тетракальцийфосфат, и/или биостекло. Покрытие формируют следующим образом: - откачивают вакуумную камеру до остаточного давления не выше $6.0*10^{-4}$ Па, заполняют затем аргоном и доводят до рабочего давления (5.0-12.0) $*10^{-2}$ Па, проводят ионную очистку образца в течение 5-10 минут, разместив его в зоне ионного источника; - при рабочем давлении $(1,3-4,0)*10^{-1}$ Па зажигают ВЧ магнетронный разряд на мощности 50 Вт с последующим ступенчатым через интервал в 50 Вт подъемом мощности до 300 Вт и выдержкой по 10 минут на каждой ступени; - проводят процесс ВЧ магнетронного распыления покрытия из мишени доведением рабочего вакуума до значения $(9,0-12,0)*10^{-2}$ Па, введением образца в зону магнетрона и выдержкой в этой позиции в течение 2-10 часов. Недостатком данного способа является длительная, в течение 2-10 часов, выдержка в зоне магнетрона.

Известен также способ нанесения покрытия на титановую подложку (Патент РФ №2694963, Способ получения композиционного нанопокрытия на наноструктурированном титане). Способ включает синтез кальцийфосфатных структур на поверхности наноструктурированного титана. Перед синтезом кальцийфосфатных структур проводится подготовка поверхности наноструктурированного титана хлорированием и метилированием. Далее метилированную поверхность обрабатывается циклически в потоке гелия низкомолекулярными реагентами. На полученную шероховатую поверхность наносится кальцийфосфатные наноструктуры в две стадии, сначала обрабатывается парами пятихлористого фосфора в газовой фазе, после чего продолжается обработка ионами кальция из органического раствора нитрата кальция методом ионного обмена. Недостатком данного способа является использование в процессе нанесения покрытия высокотоксичных реагентов, таких как пятихлористый фосфор, метилирующие реагенты.

Известен способ (Патент РФ №2476243, Способ получения кальцийфосфатного покрытия на имплантате из биоинертного материала (варианты)), заключающийся в распылении мишени, содержащей гидроксиапатит $Ca_{10}(PO_4)_6(OH)_2$, в плазме высокочастотного разряда в вакуумной камере в атмосфере аргона, при этом в качестве биоинертного материала используют наноструктурированный титан марки ВТ 1-0 со структурированным поверхностным слоем, а покрытие формируют в плазме ВЧ-магнетронного разряда мощностью 150-250 Вт, при давлении аргона в камере 0,25-1,5 Па в течение 20-300 мин, при этом расстояние от мишени до поверхности имплантата 45-60 мм, а также к способу, который заключается в распылении мишени, содержащей

гидроксиапатит $Ca_{10}(PO_4)_6(OH)_2$ в плазме высокочастотного разряда в вакуумной камере в атмосфере аргона при вышеуказанных технологических параметрах, но при этом в качестве биоинертного материала используют металлокерамику на основе стабилизированного диоксида циркония. Кальцийфосфатное покрытие на имплантате из биоинертного материала обладает повышенной долговечностью в условиях циклических нагрузок. Недостатком указанного способа получения покрытия является использование в качестве материала мишени гидроксиапатита, который, несмотря на отличную биосовместимость с тканями организма, обладает малой биорезорбируемостью в жидкостях организма, следствием чего является недостаточная остеоинтеграция с окружающей имплантат костной тканью.

Наиболее близким к предлагаемому изобретению является патент РФ №2641597, Способ электроплазменного напыления биосовместимых покрытий на основе магнийсодержащего трикальцийфосфата. Данный способ включает предварительную подготовку поверхности имплантата воздушно-абразивной обработкой и ультразвуковым обезжириванием, далее проводят электроплазменное напыление подслоя из титана и биосовместимого слоя, ультразвуковое обезжиривание проводят в водном растворе ПАВ при температуре до 40°С в течение 5-7 мин, электроплазменное напыление подслоя титана производят с дистанции напыления 120-150 мм в течение 12-15 с, при расходе плазмообразующего газа 20 л/мин, дисперсности не более 150 мкм и токе дуги 350 A, электроплазменное напыление порошка магнийсодержащего трикальцийфосфата производят с дистанции напыления 50-60 мм в течение 10-12 с, расход плазмообразующего газа составляет 20 л/мин, дисперсность составляет не более 90 мкм и ток дуги 350 A.

К недостаткам данного способа нанесения покрытий следует отнести отсутствие у указанного покрытия антибактериальных свойств. Известно, что наиболее частым осложнением операций по установке имплантата, является перипротезная инфекция, приводящая к удлинению сроков нетрудоспособности, а в ряде случаев требующая повторных (ревизионных) операций (Тихилов Р.М., и соавт.. Костная аллопластика при ревизионном эндопротезировании коленного сустава. // Травматология и ортопедия России. - 2009 - №3. - С. 148-150). Известно, что ионы марганца входят в состав тканей человека и животных, проявляют антибактериальную активность (Rau, J.V., Fadeeva, I.V., Fomin, A.S., Barbara, K., Galvano, E., Ryzhov, A. P., ... & Uskokovic, V. Sic Parvis Magna: Manganese-Substituted Tricalcium Phosphate and Its Biophysical Properties // ACS Biomaterials Science & Engineering. 2019. V.5 (12). P. 6632-6644).

Задачей настоящего изобретения является получение методом плазменного напыления марганецсодержащего покрытия на основе трикальцийфосфата.

Технический результат заключается в получении покрытия с антибактериальными свойствами за счет применения марганецсодержащего трикальцийфосфата (Mn- $TK\Phi$), используемого в качестве компонента, входящего в состав плазмонапыленного покрытия.

Технический результат достигается тем, что способ плазменного напыления биосовместимых покрытий на основе трикальцийфосфата с дополнительным легирующим элементом, включающий предварительную подготовку поверхности имплантата абразивной обработкой и последующем плазменном напылении подслоя из титана и биосовместимого слоя, согласно изобретению, плазменное напыление подслоя титана производят на дистанции напыления 90-110 мм, при расходе плазмообразующего газа 45-60 л/мин и токе дуги 400-450 A, и плазменное напыление порошка трикальцийфосфата, содержащего ионы марганца (2+), в концентрации 3

мас.%, производят на дистанции напыления 95-110 мм, при расходе плазмообразующего газа 34-36 л/мин и токе дуги 400-450 $\rm A$.

Марганецсодержащий трикальцийфосфат с содержанием марганца 3% получен синтезом с использованием механоактивации по методике, описанной ранее (И.В. Фадеева, А.С. Фомин, С.М. Баринов, Г.А. Давыдова, И.И. Селезнева, И.И. Преображенский, М.К. Русаков, А.А. Фомина, В.А. Волченкова Синтез и свойства марганецсодержащих кальцийфосфатных материалов // Неорганические материалы. 2020. Т.56. №7. С. 1-8). Порошок марганецсодержащего трикальцийфосфата для напыления был подготовлен следующим образом. Полученный в результате синтеза порошок Мп-ТКФ прессовали в виде дисков при удельном давлении прессования 500 кг/см², после чего проводили обжиг в камерной печи с силитовыми нагревателями при температуре 1200°С в течение 2 часов. Полученную керамику дезагрегировали в планетарной мельнице циркониевыми помольными телами в течение 20 мин при скорости оборотов 300 мин⁻¹, после чего отбирали фракцию 30-60 мкм с помощью набора сит. Частицы полученного керамического порошка Мп-ТКФ характеризовались формой, близкой к округлой, и размерами в интервале 50-90 мкм. Содержание марганца в порошке составило 3%.

Пример 1.

Керамическое ТКФ покрытие напыляли дуговым плазмотроном с использованием стандартного универсального плазменного устройства UPU 3D с плазменной горелкой постоянного тока, ток дуги плазменной горелки составлял 400 A, напряжение составляло 65 B, а расход аргона составлял 26 л/мин и азота 8 л/мин, дистанция напыления 95 мм, размер частиц порошка для напыления 32-63 мкм при скорости перемещения образцов под плазмотроном 300 мм/с. Содержание марганца в порошке для напыления составляло 3,0%, а в покрытии - 2,0%. Была обнаружена выраженная антибактериальная активность покрытия по отношению к штаммам бактерий Staphylococcus aureus, Salmonella typhi, E. coli, E. faecalis and P. Aeruginosa.

Пример 2.

30

Керамическое ТКФ покрытие напыляли дуговым плазмотроном с использованием стандартного универсального плазменного устройства UPU 3D с плазменной горелкой постоянного тока, ток дуги плазменной горелки составлял 420 A, напряжение составляло 65 B, а расход аргона составлял 26 л/мин и азота 8 л/мин, дистанция напыления 100 мм, размер частиц порошка для напыления 32-63 мкм при скорости перемещения образцов под плазмотроном 300 мм/с. Содержание марганца в порошке для напыления составляло 3,0%, а в покрытии - 0,6%. Была обнаружена слабая антибактериальная активность покрытия по отношению к штаммам бактерий Staphylococcus aureus, Salmonella typhi, E. coli, E. faecalis and P. Aeruginosa.

Пример 3.

Керамическое ТКФ покрытие напыляли дуговым плазмотроном с использованием стандартного универсального плазменного устройства UPU 3D с плазменной горелкой постоянного тока, ток дуги плазменной горелки составлял 450 A, напряжение составляло 65 B, а расход аргона составлял 26 л/мин и азота 8 л/мин, дистанция напыления 110 мм, размер частиц порошка для напыления 32-63 мкм при скорости перемещения образцов под плазмотроном 300 мм/с. Содержание марганца в порошке для напыления составляло 3,0%, а в покрытии - 0,2%. Была обнаружена слабая антибактериальная активность покрытия по отношению к штаммам бактерий Staphylococcus aureus, Salmonella typhi, E. coli, E. faecalis and P. Aeruginosa.

Таким образом, предложен способ нанесения покрытия на титановые имплантаты

RU 2754 129 C1

из трикальцийфосфата, содержащего ионы марганца, которое характеризуется антибактериальными свойствами.

(57) Формула изобретения

Способ плазменного напыления на поверхность имплантата биосовместимого покрытия на основе марганецсодержащего трикальцийфосфата, включающий предварительную подготовку поверхности имплантата абразивной обработкой, последующее плазменное напыление подслоя из титана и биосовместимого слоя, отличающийся тем, что плазменное напыление подслоя титана проводят с дистанции напыления 90-110 мм при расходе плазмообразующего газа 45-60 л/мин и токе дуги 400-450 A, а плазменное напыление биосовместимого слоя из порошка марганецсодержащего трикальцийфосфата с концентрацией марганца 3 мас.% проводят с дистанции напыления 90-110 мм при расходе плазмообразующего газа 34-36 л/мин и токе дуги 400-450 A.